
Improving Code E!ciencyImproving Code E!ciency
Rob Morgan

rmorgan10.github.io

OutlineOutline
Example: What do we mean by efficient?
Algorithm Design
Profiling Code
Writing Efficient Code
Fun Python Quirks

ExampleExample
Sorting a list of numbersSorting a list of numbers
Believe it or not, there are dozens of different ways to sort a list of numbers. We'll look at
three and compare their efficiencies.

Our Sorting AlgorithmsOur Sorting Algorithms
Insertion Sort (the simple one)
Bubble Sort (the cute one)
Merge Sort (the smart one)

Insertion SortInsertion Sort
The simple one.

1. Start by iterating through an unsorted list
2. For each element,

A. traverse the list backwards until you find a smaller number
B. Put the element right after the found smaller number

3. Once you finish the iteration, the list will be sorted

Bubble SortBubble Sort
The cute one.

1. Iterate through the unsorted list backwards and track the smallest element
2. Place this as the first element
3. Repeat step 1
4. Place the result as the second element
5. ...

Merge SortMerge Sort
The smart one.

1. Split an unsorted list in half
2. For each half, split in half again and repeat this process
3. Then, to merge two adjacent halves, iterate through them simultaneously and place

the elements in order

Sorting Algorithms, Start Your Engines!Sorting Algorithms, Start Your Engines!
In [7]: data = list(np.random.uniform(1, 10000, size=50000).astype(int))

In [8]: %%timeit
sorted_data = merge_sort(data)

In [10]: %%timeit -r 1
sorted_data = bubble_sort(data)

In [12]: %%timeit -r 1
sorted_data = insertion_sort(data)

396 ms ± 42.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

3min 51s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

3min 5s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

Why so di"erent?Why so di"erent?
The three algorithms do the same thing to the same data, so what makes one faster than the
other?

To answer this, let's look at the runtime as a function of the dataset size.

In [13]: runtimes = {'MERGE': [], 'BUBBLE': [], 'INSERTION': [], 'SIZE': []}

for dataset_size in [10, 100, 1000, 10000]:
runtimes['SIZE'].append(dataset_size)
data = list(np.random.uniform(1, 10000, size=dataset_size).astype(int))

Run and time insertion-sort
start = time.time()
sorted_data = insertion_sort(data.copy())
end = time.time()
runtimes['INSERTION'].append(end - start)

Run and time bubble-sort
start = time.time()
sorted_data = bubble_sort(data.copy())
end = time.time()
runtimes['BUBBLE'].append(end - start)

Run and time merge-sort
start = time.time()
sorted_data = merge_sort(data.copy())
end = time.time()
runtimes['MERGE'].append(end - start)

In [15]: plot_runtimes(runtimes)

Computer Science TimeComputer Science Time
In computer science lingo, people use "Big O" notation to characterize the asymptotic
behavior of an algorithm's efficiency.

As an example, let's revisit the bubble sort algorithm:

1. Iterate through the unsorted list backwards and track the smallest element
2. Place this as the first element
3. Repeat step 1
4. Place the result as the second element
5. ...

This is asymptotic behavior.

It has to consider each of the elements, and for each element it has to compare to
at most other elements.

 = for large

()n2

n
n − 1

n × (n − 1) − nn2 ∼ n2 n

In [16]: plot_runtimes(runtimes, annotate=True)

Can you think of a way to sort a list that might be ?(n)

What about a sorting algorithm that's as slow as possible?

SummarySummary
In your research, the number of times you will have to design an algorithm to sort a list will
hopefully be zero. So why spend time talking about it?

The most common reason code runs slowly:

Algorithmically the code is inefficient

In the remainder of this talk, I'll show lots of little tricks for speeding up python code, but

overall the biggest factor in the efficiency of the code is the algorithmic design.

Profiling CodeProfiling Code
Let's take a look at how you can spot parts of your code that could use some TLC.

Let's say you have a function that for an input list returns the sum of the smallest n
elements as the nth element in a new list.

In [17]: def get_n_smallest(list_, n):
return sorted(list_)[0:n]

In [18]: def get_sum(list_):
sum_ = 0
for element in list_:

sum_ += element
return sum_

In [19]: def function(list_, return_output=False):
output_list = []

for n in range(len(list_)):

smallest_n = get_n_smallest(list_, n)
sum_smallest_n = get_sum(smallest_n)
output_list.append(sum_smallest_n)

if return_output:
return output_list

Profiling PracticeProfiling Practice
Let's generate some dummy data to run this function on

In [20]: list_1 = list(np.random.uniform(1, 1000, size=500))

and try to spot the bottlenecks in this code when running on the list.

Tools for spotting algorithmic ine!cienciesTools for spotting algorithmic ine!ciencies
Profilers are your best friends.

%time
%timeit
%prun
%lprun
%%heat
%memit
%mprun

There are certainly more, but these are dippity dope.

Runtime profilersRuntime profilers
In [21]: %timeit function(list_1)

In [22]: %time function(list_1)

62.7 ms ± 285 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

CPU times: user 68.2 ms, sys: 1.65 ms, total: 69.8 ms
Wall time: 70.4 ms

Functional profilersFunctional profilers
In [23]: %prun function(list_1)

Memory ProfilersMemory Profilers
In [24]: %memit function(list_1)

peak memory: 89.77 MiB, increment: 0.03 MiB

Next up is %mprun

%mprun works on a file, not a cell, so we have to make a dummy script real quick.

In [25]: %%file mprun_demo.py

import numpy as np

list_1 = list(np.random.uniform(1, 1000, size=500))

def get_n_smallest(list_, n):
 return sorted(list_)[0:n]

def get_sum(list_):
 sum = 0
 for element in list_:
 sum += element
 return sum

def function(list_):
 output_list = []

 for n, element in enumerate(list_):
 smallest_n = get_n_smallest(list_, n)
 sum_smallest_n = get_sum(smallest_n)
 output_list.append(sum_smallest_n)

Overwriting mprun_demo.py

In [26]: from mprun_demo import function as demo_function
%mprun -f demo_function demo_function(list_1)

Line ProfilersLine Profilers
In [27]: %lprun -f function function(list_1)

Fancy Line ProfilersFancy Line Profilers
%%heat
import numpy as np

list_1 = list(np.random.uniform(1, 1000, size=500))

def get_n_smallest(list_, n):
return sorted(list_)[0:n]

def get_sum(list_):
sum = 0
for element in list_:

sum += element
return sum

def function(list_):
output_list = []

for n, element in enumerate(list_):
smallest_n = get_n_smallest(list_, n)
sum_smallest_n = get_sum(smallest_n)
output_list.append(sum_smallest_n)

function(list_1)

Profiling SummaryProfiling Summary
If your code feels slow, profiling should be your first step.

Built-in profilers like %time , %timeit , %prun , %lprun , %%heat , %memit , and

%mprun can diagnose where your code is spending the most time and energy.

Re-designing the code to make these areas more algorithmically efficient is the best way to
improve your code.

How to Actually Write Algorithmically E!cient Code inHow to Actually Write Algorithmically E!cient Code in
PythonPython

So far we've defined algorithmic efficiency and looked at tools for diagnosing inefficiency.

Let's take a look at how one might use these tools to make their code more efficient.

We'll cover three main techniquesWe'll cover three main techniques
1. Vectorization
2. Parallelization
3. Compilation

VectorizationVectorization
When you are trying to perform an operation on every element in an array, there are ways
to speed up this repeditive calculation.

Enter numpy .

ExampleExample
Let's say we want to add 6 to every element in a list of 1,000,000 elements.

In [29]: data = np.random.uniform(1, 10000, size=1000000)

In [30]: %%timeit
data_plus_6 = []
for x in data:
 data_plus_6.append(x + 6)

In [31]: %timeit [x + 6 for x in data]

In [32]: %timeit data + 6

294 ms ± 4.98 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

271 ms ± 4.17 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

541 µs ± 39.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

NumpyNumpy
A very common python package for numerical computations.

The underlying data structure of numpy is an array which can have arbitrarily many

dimensions. A numpy.array will apply operations to all of it's elements simultaneosly.

Thus, if you can replace a for loop in your code with an array, you are going from to

.

Often, scientific codes can be much improved with this simple change.

(n)
(1)

Most Common Numpy FunctionsMost Common Numpy Functions
numpy.where()

Apply a logical condition to every element in an array simultaneously

numpy.linspace() , numpy.logspace() , and numpy.arange()

Create an array of numbers by specifying a minimum and maximum

np.random

A library of probability distributions that you can sample from at

The axis argument in numpy functions

Allows you to specify which dimension of the array you operate on

(1)

Let's do an example with a calculation along different axes, because it really is that
important.

In [33]: arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(arr)

print("\nSum along all rows")
print(np.sum(arr, axis=1))

print("\nGet the 90th percentile cutoff across all columns")
print(np.percentile(arr, q=90, axis=0))

print("\nFor all rows and all columns, find the median")
print(np.median(arr))

[[1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]

Sum along all rows
[10 26 42]

Get the 90th percentile cutoff across all columns
[8.2 9.2 10.2 11.2]

For all rows and all columns, find the median
6.5

Bonus numpy tip (not related to code efficiency)

numpy.save() and numpy.load() will legitimately improve your overall quality

of life.

ParallelizationParallelization
Is something you're doing ?

No problem! Just run it on computers!

(n)

n

There are a couple different types of paralellization:

1. Distributed computing
2. Local multi-processing
3. Local threading

Distributed ComputingDistributed Computing
Sometimes you are fortunate enough to have access to a computing cluster.

If this is your case, a strategy for running one code or job on a lot of data is to split up your
data and run the code on small chunks of it in parallel, each on a separate computer in the
cluster. Then when all is said and done, you aggregate the results and go on with your day.

At UW-Madison, you can obtain access to the High-Performance Computing Cluster run
from the Institute for Discovery, request an account on the HEP computing cluster, or gain
access to a remote cluster your group may work with.

Local Multi-ProcessingLocal Multi-Processing
Multi-processing is a way of doing this "split-up, run-in-parallel, aggregate" dance on your
own computer.

Modern laptops are built with multiple "cores" where computations are performed. Each
core can only do one thing at a time, in a serialized fashion, and this is how most day-to-day
operations on your laptop are executed.

BUT.

With neat modules you can distribute tasks to different cores on your computer and make
things happen in parallel.

Let's look at a simple python example.

In [34]: %%file multiprocess_demo.py

Define the script you want to run with mulit-processing
def worker(num):
 """process worker function"""
 print('Worker:', num)
 return

In [35]: import multiprocessing
from multiprocess_demo import worker

Trigger the parallelized jobs to start
jobs = []
for i in range(5):

p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()

Overwriting multiprocess_demo.py

Worker: 1
Worker: 0
Worker: 2
Worker: 3
Worker: 4

Local ThreadingLocal Threading
Similar but ever so slightly different from multi-processing is threading.

You may have noticed that we created a standalone script to utilize the multi-processing
library. But what if we have a small section within a larger script that we would like to
parallelize?

This smaller task is exactly what threading is meant to make possible.

Let's look at an almost identical example.

In [36]: import threading

Define the script you want to run with threading
def worker(num):

"""thread worker function"""
print('Worker:', num)
return

Trigger the parallelized jobs to start
jobs = []
for i in range(5):

p = threading.Thread(target=worker, args=(i,))
jobs.append(p)
p.start()

Worker: 0
Worker:Worker: 1
 2
Worker: 3
Worker: 4

Paralellization SummaryParalellization Summary
There are a lot of minute differences between distributed computing, multi-processing, and
threading, but all tasks work towards the same goal:

Run independent parts of a workflow in parallel instead of waiting on other parts to
finish

Overall, these types of approaches can take your from to and often times make it
possible for you to do calculations you need in an amount of time less than the length of the
average PhD.

(n) (1)

CompilationCompilation
You may have noticed by now that everything I've shown has been geared around speeding
up python code.

Why not talk about C++ , Java , C , C# , Fortran , or Lisp ?

All these languages are "compiled" languages, and that aspect differentiates them from
python .

When code is compiled, your computer knows ahead of time exactly what it needs to do, so
it is easier for the computer to put its head down and grind away.

Python is an "interpreted" language, which means the computer is figuring out what it

needs to do as it runs the program.

Let's think about a for loop through the eyes of your python interpreter.

Python allows you to put any collection of objects together in a list. While this is

sometimes convenient, it creates a need for the interpreter to figure out how to handle the
current object in the iteration.

for i in [1, 2, "Cat", 4.578, ["a", "b"], 7]:
"""

 do stuff
 """

This attribute makes python super slow compared to compiled languages.

Compiling Python CodeCompiling Python Code
Thankfully, there are ways to compile your python code to speed things up if you're unable
to design your way out of using a for loop.

We'll look at numba for doing this.

Other methods and modules exist for this purpose, such as Cython , but I'll leave those for

another day.

Just-In-Time Compiling with PythonJust-In-Time Compiling with Python
numba is a super awesome module for compiling python code on the fly.

If you trigger numba on a for loop, the first time through the loop numba will compile

the body of the loop. Then in subsequent iterations, the code will run at speeds comparable
to compiled languages.

Let's try a simple example of computing the length of the hypotenuse of a right triangle
from the other side lengths.

In [37]: def hypotenuse(x, y):
x = abs(x)
y = abs(y)
t = min(x, y)
x = max(x, y)
t = t / x
return x * math.sqrt(1+t*t)

hypotenuse(3, 4)

Out[37]: 5.0

Now let's numba -fy our hypotenuse function:

In [38]: from numba import jit

numba_hypotenuse = jit(hypotenuse)

numba_hypotenuse(3, 4)

If you want to be a fancy pants, you can also numba -fy a function using decorators like this:

@jit
def numba_hypotenuse(x, y):

x = abs(x)
y = abs(y)
t = min(x, y)
x = max(x, y)
t = t / x
return x * math.sqrt(1+t*t)

Out[38]: 5.0

So which was faster?? Maybe some of the tools we've used earlier can help us figure it out.

In [39]: %timeit hypotenuse(3, 4)

In [40]: %timeit numba_hypotenuse(3, 4)

637 ns ± 21 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

149 ns ± 0.468 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

SummarySummary
The three main ways to speed up your code are vectorization, parallelizarion, and
compilation.

You should also utilize these three things in that order.

Vectorizing parts of your code is often just replacing a for loop with an array operation,

and is a very easy change to make that will reduce the algorithmic complexity of your code.

Parallelization is great, but often requires redesigning large sections of your code and there
can be a steep learning curve with submitting jobs on a cluster

Compiling works well in principle, but in practice numba can be finicky with the types of

objects and the situations it work well with. It can also obfuscate the code.

Before you do any of this: Profile your code.

Overall SummaryOverall Summary

To assess the efficiency of your code, you should think in terms of algorithmic complexity.

Ask yourself, "How will the number of things my program has to do scale with the
size of the data?"

Use profilers to diagnose parts of your code that might be bottlenecks.

In this talk we looked at %time, %timeit, %prun, %lprun, %%heat, %memit, and

%mprun

Employ techniques like vectorization, parallelization, and compilation to speed things up

Vectorization: for reducing the algorithmic complexity
Parallelization: for fighting through algorithmic complexity
Compiliation: for saying "complexity comshmlexity, I'm just gonna run my code fast"

Improving Code E!ciencyImproving Code E!ciency
Rob Morgan

rmorgan10.github.io

